
LESS SCREENS,
MORE OBJECTS!
Prototyping Networked Objects
for the Internet of Things

By 2020, fifty billion digital devices will be
interconnected, and form the so-called
“Internet of Things”. The digital experience
that once shifted from the computer to
the mobile device, shifts again into digital
objects that sense and act upon the physical
space. Smart thermostats, locks, light bulbs
and moisture sensors that are already on
the shelves of electronic stores give us a
glimpse into such a
future. Yet we are just at
the very beginning of an
ongoing development.

This project explores
the Internet of Things
with the aim of making
it more accessible for
designers. A conceptual
framework, a design
method, and a tool that
facilitates the rapid
prototyping of net-
worked objects lay the
foundation that allows
designers to investigate
the interconnected
future through pro-
totyping networked
experiences.

LE
SS

 S
CR

EE
NS

, M
OR

E
OB

JE
CT

S!

Joël Gähwiler © 2015
joelgaehwiler.com

LESS SCREENS,
MORE OBJECTS!

LESS SCREENS,
MORE OBJECTS!

Prototyping Networked Objects
for the Internet of Things

Master’s thesis by Joël Gähwiler © 2015

Interaction Design
Zurich University of the Arts

Mentors
Prof. Dr. Karmen Franinovic
Björn Franke

By 2020, fifty billion digital devices will be
interconnected, and form the so-called “Internet of
Things”. The digital experience that once shifted from
the computer to the mobile device, shifts again into
digital objects that sense and act upon the physical
space. Smart thermostats, locks, light bulbs and
moisture sensors that are already on the shelves of
electronic stores give us a glimpse into such a future.
Yet we are just at the very beginning of an ongoing
development.

This project explores the Internet of Things with the
aim of making it more accessible for designers. A
conceptual framework, a design method, and a tool
that facilitates the rapid prototyping of networked
objects lay the foundation that allows designers
to investigate the interconnected future through
prototyping networked experiences.

Thank goes to all that supported me during this project
especially Adina who always had my back with her endless
curiousness in what I did, which resulted in having a great
partner to test my ideas and concepts. Thank goes also to my
mentors Karmen and Björn who have been very supportive
and helped me to get the project going and opened many doors
during the project and for future opportunities. Lastly, I would
like to thank my colleagues Fabian and Yves who have been
willing to go through this together by simultaneously enrolling in
the program and having a great time pursuing each other’s goals
and dreams.

Contents
Introduction� 15
An Interconnected World� 23
A World Made of Objects� 31
Networked Objects� 43
Designing Networked Objects� 55
Prototyping Networked Objects� 67
The Missing Link� 79
Networked Exploration� 95
Conclusion� 109

15

Introduction
Life today cannot possibly be imagined without the changes

that have been brought about by the digital information age. Many
things have become easier, more efficient and available at any time
and location. For the sake of all these amenities, we let the computer
replace social interactions like going out with a friend or talking to
a bank employee. The screen has become an integral component of
our everyday life and is the main terminal to the global data stream

– the Internet. Because services like everyday shopping or taking out
an insurance tend to be only available in the digital space nowadays,
the two worlds of the digital and physical are even more separated
than before and the rise of smartphones, mobile apps and the app
stores continues. The continuing separation forces the user to con-
nect the worlds back together by transcribing, translating and trans-
ferring data between them. However, dealing with these information
systems, applications, operating systems and computers in general,
the user comes up against his limits in regards to the complexity of
those systems. This in turn leads to errors and an even stronger sense
of disconnection between the physical and the digital. The human
being is originally made to interact with objects in the physical space
rather than concepts in a space that is abstract and intangible.

Today, we still have the chance to distance ourselves from that
screen-centered model and turn to a more object-centered model. In
contrast to the traditional Internet where applications interface with
the world through screens and keyboards, the future user will inter-
act with the world using interconnected, physical objects. Wherever
we used computers and smartphones to access the digital world in
the past, there will be objects that connect the two worlds togeth-
er and allow us to interact with them directly. These “networked
objects” will enclose the digital world by providing natural and
physical interfaces. Complex computer systems will be hidden and

16

encapsulated in objects that are limited in functionality, specifically
located and only accessible in the physical world. Thus, the digital
world will be embedded in the physical world, and the combined
interface will be more powerful than everything available before.

This is not a new idea and such future scenarios, visions and
dreams have been described for example by the academic Mark
Weiser as “Ubiquitous Computing” a long time ago. Already in
1991, he saw the need for such a transition, although they had
literally just invented the personal computer. Recently, the idea of
an interconnected future has resurfaced under the term “Internet
of Things”. It has become a buzzword of the century and has caught
the attention of many, mostly however of business people that are
looking for new ventures to invest millions in and push digital tech-
nologies even faster and further. We can already observe this change
in my school's own electronic store where they have dedicated a
shelve (Fig. 1.1) to such “IoT devices”. Among other things they sell
the “iGrill” (Fig. 1.2) which helps you find the right grill tempera-
ture for your steak by using a sensor that communicates with your
smartphone.

“The world’s most advanced grill thermometer” it says in capi-
tals on the front of the packaging. On the back, they promote the
product with the following sentence: “Now you can get back to your
guests, go inside and watch the game or work on other dishes. Keep
a close watch on the temperature progression of your meat right
from your smart device and receive an alert once your food is ready
to enjoy.” As I was studying this product I wasn’t sure what to make
of it, yet it was clear to me that it would not be part of my future in
this form. I could argue that grilling is a social interaction and that
the device ruins that experience through an interfering technological
abstraction. Although the question “How much technology is right?”
is justified in this situation, this was not what troubled me. I think

Fig. 1.1 - Smart Devices Shelve at the ITZ Shop

Fig. 1.2 - The iGrill mini

19

that such a product definitely has a right to exist. Maybe it could
be more of a supportive device that prevents me from burning my
steaks. Maybe it even helps me to properly prepare the coal to have
a good foundation for my grilling with friends. Possibly, the device
could also support interactions with multiple users and not just the
smartphone owner. Or, the notification mechanism could be subtle
and integrated into another physical object. As I was turning all
these ideas around in my head I realized that designers, especially
interaction designers, would already have a proper mindset to think
about such matters but are, as of yet, completely left out of this
development process. In this moment it was clear to me that this has
to change.

From early research into this topic I learned that designers are al-
ready aware of these future concepts and also would be up to inves-
tigating them. However, the technological barrier is still to high and
especially when it comes to building objects that are interconnected
many designers lack the skills to do so. Building prototypes has
become an important part of the design process and ideas stand and
fall with the ability to transport the concept into working physical
objects. Recognizing this lack of proper tools and methods to apply
in such situations, I dedicated my master thesis to diving into this
world, learning to understand it, finding applicable technologies and
methods, abstracting them and making them useful for designers.
The core idea of this undertaking was to come up with a framework
that can be used by any designer without having to make the same
journey as I did. Instead, he or she should be able to focus on think-
ing about and designing for our future world.

In the following chapters of my Master’s thesis I will present my
exploration based on the research question: “How can the proto-
typing of interconnected objects for the Internet of Things become
more accessible for designers?”. The following second chapter intro-
duces the terms “Internet of Things” and “Ubiquitous Computing”

20

and elaborates on these future scenarios. The third chapter will
look at “Smart Objects” and related concepts and theories. Based
on this foundation I will introduce my concept of “Networked
Objects” and of how they will embed the digital in the physical
world in the fourth chapter. The different design aspects of such
networked objects will be dealt with in chapter five. In the sixth
chapter, I will look at how prototyping can be used to support the
exploration of such technological spaces. As communication is key
to networked objects, I will present the tool and platform “shiftr.io”
in the seventh chapter. The preliminary findings will be combined
into a design method that can be used by designers to easily build
prototypes of such networked objects. The method will be explained
in chapter eight. The ninth and last chapter is a conclusion of the
conducted research as well as an outlook on future opportunities
and possibilities.

23

An Interconnected World
Sal awakens: she smells coffee. A few minutes ago her alarm clock,
alerted by her restless rolling before waking, had quietly asked “coffee?”,
and she had mumbled “yes.” “Yes” and “no” are the only words it knows.
[…] Glancing at the windows to her kids’ rooms she can see that they
got up 15 and 20 minutes ago and are already in the kitchen. Noticing
that she is up, they start making more noise. At breakfast Sal reads the
news. She still prefers the paper form, as do most people. She spots an
interesting quote from a columnist in the business section. She wipes
her pen over the newspaper’s name, date, section, and page number and
then circles the quote. The pen sends a message to the paper, which
transmits the quote to her office. […] (Weiser, 1991: p. 7)

A digital networked world, its social and economical impact, are
topics that have been discussed many times in the past decades.
Researchers have looked at possible future scenarios and tried to
grasp, how our world would look and feel before, during and after
such a development. In 1991, Mark Weiser wrote his popular article

“The Computer for the 21st Century” and founded the research
field “Ubiquitous Computing” (Ubicomp). Imagining a future in
which computers are everywhere and networked, seemed somewhat
magical at that time, as the researchers at Xerox PARC had only
just invented the personal computer. In the end however, it was his
vision that became feasible not only to his colleagues but also to the
masses.

Apart from influencing decades of research in computer science,
the research at Xerox PARC also paved the way for the exploration
of new methods that help in understanding such future scenarios.
Paul Dourish and Genevieve Bell, who reflect on the Ubicomp
research field in their book “Divining a Digital Future”, remarked
that Weiser and his colleagues had their own investigation strategies

24

for such matters. “One of the laboratory’s strategies was to develop
and widely deploy its technologies within its own environment
and to live with and use them daily.” (Dourish et. al, 2011: p. 12)
This approach was a very practical one and headed by PARC’s own
researcher Alan Kay with the statement: “The best way to predict the
future is to invent it.” In fact, the laboratory took this very seriously
and developed for example the laser printer, the graphical user inter-
face, the computer mouse and Ethernet, all things that influenced
the world of today and its technology-driven society.

Today, we are facing another revolution in computer science that
assembles under the term “Internet of Things” (IoT). In contrast
to Ubicomp, the term “IoT” made it into society as a buzzword, a
hype and a reason to invest money in many projects conducted by
scientists and the industry. What started with smart cities and an
efficient distribution of resources (Evans, 2011: p. 2), has by now
turned into a race between many different companies that are trying
to launch the next digital connected product. We already see a lot of
those products in our stores: smart light bulbs, thermostats, weather
stations, door locks, a variety of health and movement trackers as
well as power counters, and many more. Clearly this is just the very
beginning of a family of products, that will soon interoperate and
add intelligence to everyday life.

Interconnected Objects
In “The Computer for the 21st Century”, Weiser describes a

morning in which the protagonist Sal wakes up and starts her day by
speaking to the alarm clock that is able to track her sleep but only
can reply “yes” or “no”. After that she gets notified by the window in
the door to her kids room, that they are already up since 20 min-
utes and currently in the kitchen. In the last example she reads the
news that is still in paper form but interactive, so that she is able to

25

mark a quote with a special pen, and send it to her office for further
reading.

Weiser’s description paints a picture of an environment that aids
people in daily life through the wide application of invisible com-
puters. Looking at it today, one can easily see how Weiser’s objects
are intelligent and full of features similar to the ones in today’s
smartphones. However, when we look more closely at each object
we find several indicators that show us well chosen, functional limits.
For example, the alarm clock is able to track Sals sleep to ask the
question “coffee?” in the right moment, but will only accept a “yes”
or “no”. The functionality of the alarm clock is obviously limited
to its main task: detect the awakening and ask the pre-programed
question. Another limited object is the window on the door to the
children’s room, which shows when they woke up and where they
are now. The window is physically connected to the room and thus
the provided information is limited to the content of the specific
room. Lastly, Weiser anticipated that some things, such as the news-
paper, will not be replaced by technology, but are anyway linked to
the digital world. The pen, that Sal uses to send the quote to her
office, offers a very specific functionality again, which, compared to
today, is provided by our smartphones.

The theoretical design of these objects by Weiser was heavily influ-
enced by the upcoming debate about privacy at that time. However,
the strict limitation in functionality and the physical link to the
world make his designs an inspiration for new definitions of the
qualities ubiquitous objects should possess.

I live and work in a world animated by invisible spirits. Or at least, that’s
certainly how it seems. My house, my automobile, and my office are all
constantly aware of my needs and movements. My fridge knows when
I am running out of milk (and it orders more). My car knows what the
weather is like and begins to de-ice itself as soon as I fill the dedicated

26

car-beverage container with hot coffee. My office knows when (and
where) I have parked my car, and alerts my clients (and coffee-mak-
er) accordingly. Even the clothes I am wearing are part of this web of
intercommunicating support systems. My shirt monitors my heart rate,
temperature, and mood, and talks to the room and car when things look
dicey. (Clark, 2009: p. 4)

This vision formulated by Andy Clark, a cognitive scientists with
an affinity to design, is very similar to Weiser’s vision but obvious-
ly inspired by the massive scale of today’s Internet. Clark begins
with making an initial statement that in his vision all objects are
constantly interconnected, have access to each other's data stream
and are thus able to track all interactions with the world and with
other objects. The objects are also autonomous and able to interact
with other systems in the users will, as the example with the smart
fridge shows. The autonomy of objects continues in the examples
about the self de-icing car as well as the office that coordinates
other objects and also objects that belong to other individuals. The
functionality in these examples lies clearly in the interconnection,
rather than the specific objects. It seems that there are no boundaries,
as the office is able to communicate with his client to push notifi-
cations about his whereabouts. The scope of Clark’s description is
different to Weiser’s, as he is also speaking about the office and the
car, environments in which many of such connected objects might
interact and create a dense network. With his vision, Clark draws
a beautiful image of a world, where the IoT made its breakthrough
and the interconnection between objects is ubiquitous.

Synthesizing Weiser’s and Clark’s vision we clearly can envision
that the future world has lots of smart objects. They stand at the
border between the physical and digital world and act as an inter-
face between both. More importantly, these objects form a network
with similar kinds of objects and others that may be near or distant.
While the single object is reduced in its functionality, the network

27

can follow a higher task or – with the user’s consent – even act
autonomously. Interconnected objects link the physical world and
the digital world together, and transport information between them
interchangeably. The computer becomes more hidden and encap-
sulated in the objects and new design strategies are required to not
loose functionality but enrich the environment. Traditional objects
that are un-connected and isolated do not need to be redefined and
replaced with new ones, but can be augmented by new objects so as
to preserve their original functionality.

The two stories by Weiser and Clark are, on the one hand,
technological dreams that seem unrealistic and exaggerat-
ed. On the other hand, they are clear, conceptual designs of
objects and spaces of which these futures could be made up
of. Today, technology has progressed and the technological
dream is becoming more realistic everyday. This also makes
the design less conceptual and the ideas described in the
articles more feasible. First products have been launched and
strive to bring the computer ubiquitously into every thing
around us. However, the immaturity of these objects calls for
more dreams and conceptual designs that together lead to-
wards a future where these ideas gain ground and are accepted
by society. Today, the dreamers have to be designers who are
willing to think the ideas through to the end and build the
future they envision. And just as Weiser and Clark envisioned
a whole new world and defined the qualities of the objects
within, designers are required to define their own vision and
qualities of such a future.

31

A World Made of Objects
The “Hue” light bulb (Fig. 3.1) by Philips was one of the very

first products that was available in stores on the smart object shelf.
The concept was rather simple: A strong multi-colored LED and a
microcontroller are paired and built into a light bulb that can be
used with traditional sockets. In addition to the classic switch, the
user now has the ability to change the color of the light bulb using
a mobile application. Furthermore, the light bulb can autonomous-
ly adapt to the environment and pick up colors of TVs and other
devices to create a uniform light atmosphere. Philips offers various
different light bulbs as well as configurable controllers, which will
replace traditional light switches. Combined with the mobile app,
the user can arrange, customize and program his individual lighting
setup.

The product series by Philips and those of other manufactures are
turning users into configurators and programmers of their products’
systems. This shift is not radical in itself: In the web application
market users have become configurators a long time ago and are
nowadays combining multiple applications to, for example, build
their own web shop. However, with the IoT, this change is now tak-
ing place in the physical space. Manufacturers that used to offer all-
in-one systems for home automation will now begin to focus more
on individual products that integrate neatly with other products.

Another example of a smart object currently on the market, is the
“Nest” thermostat (Fig. 3.2) by Google that controls your heating
and air conditioning system at home. The product claims that it will
learn and understand your usage patterns and use that information
to intelligently control your system in order to always maintain the
right temperature and even save money while you are not at home.
Of course, the thermostat does not calculate this data by itself, but

32

will upload all interactions and the current conditions into an infor-
mation system operated by Google that will then process the data
and send back commands to the object. With the IoT, this relation-
ship between the object and the cloud will become even stronger as
products are increasingly more connected to services that extend the
product and give them a smart, intelligent character.

Amazon recently unveiled a new product called “Dash” (Fig. 3.3)
which is an Internet connected barcode scanner that allows you to
order products by just scanning their barcodes. Products you do
not have at hand are added to the order by using the built-in speech
recognition module. The Dash is a good example for a category of
products that extend an already existing service (in this case, home
delivery) by providing an alternative interface (the scanner) to the
already available web or smartphone app (the web shop). Another
example for this kind of products is the “ROCKI” (Fig. 3.4), a mu-
sic stick that can be attached to any set of speakers to stream music
from online services like Spotify. The radically simple design and the
ability to use the device in many scenarios, lets anyone upgrade their
old speakers to work seamlessly with today’s generation of streaming
services.

Another category of smart objects consists of the hubs that
coordinate the network and give the user a centralized control
panel where general changes can be made to the system. For ex-
ample, when you leave your home you most likely want to turn
off all objects that are not needed while you are away. This kind of
functionality would be provided by the hubs and controllers. Taking
that concept a little further means that upcoming smart objects also
extend existing smart objects and can combine several of those to a
new kind of experience. Amazons Echo home assistant (Fig. 3.5), is
just a Box that integrates a speech recognition module which offers

“Siri-like” functionality from any corner of the room. Apart from the
privacy issues that have been raised concerning the constant upload

Fig. 3.1 - Philips Hue

Fig. 3.2 - Google Nest

Fig. 3.3 - Amazon Dash

Fig. 3.5 - Amazon Echo

Fig. 3.4 - ROCKI

35

of sound recordings, the box is an interesting approach to a smart
object that acts as an overseer for multiple smart objects.

The previous examples show a broad range of products that all
assemble under the term “smart objects”. Looking at the examples
more precisely, one can see certain tendencies that indicate the di-
rection the development might take. As a summary, one can classify
existing smart objects by four different characteristics: 1. Smart
objects that are configurable and programmable by the user to form
individual and unique systems that integrate with other objects;
2. Smart objects that are connected to information systems that
process, analyze and correlate the uploaded data in order to make
smart and intelligent decisions. 3. Smart objects that provide an
alternative input/output interface to existing services that may have
previously been covered by a smartphone app; 4. Smart objects that
are networked with objects similar to itself as well as others to allow
configuration and integration beyond their default usage.

The combination of the Internet and emerging technologies such as near-
field communications, real-time localization, and embedded sensors lets
us transform everyday objects into smart objects that can understand
and react to their environment. Such objects are building blocks for
the Internet of Things and enable novel computing applications. […]
(Kortuem et al. 2010: p. 46)

Gerd Kortuem and his colleagues presented an architectural
concept for smart objects in their paper “Smart Objects as Building
Blocks for the Internet of Things”. Their model is very focused on
the industry as their examples show smart objects that deal with
problems such as road construction and petrochemicals. Without
going into details, the examples are well chosen to illustrate their
argument, but are not very useful for the design discipline that is
more focused on the end-consumer market. Anyhow, Kortuem and
his colleagues make an interesting point by stating that “[…], smart

36

objects’ true power arise when multiple objects cooperate to link
their respective capabilities” (Kortuem et al. 2010: p. 49).

In their “Road-patching case study” a link is made between smart
objects that collect data from the construction machines and objects
that enforce safety policies by turning the device on or off. The
separation of concerns does not only simplify the development of
the products but also supports the comprehensibleness of the system.
This principle can easily be transformed to smart objects that reside
in a user’s home and, for example, observe several conditions of
the house’s climate or security. Furthermore, smart objects can use
capabilities of other networked smart objects to execute their task in
a better way or reach a higher, more complex goal.

Why shouldn’t smart objects be networked together and make
use of their neighbor’s capabilities? In fact, if they would not do that,
would we not end up with products that all have similar features like
a smartphone today? Herein lies the power of the network: Smart
objects do not need to be considered as devices that in themselves
are complete and offer a full featured interaction, moreover they
leave room to be extend with other smart objects and this provide a
required set of features. The configuration by the user completes the
system.

Tangible and Embedded
Imagine an iceberg, a floating mass of ice in the ocean. That is the
metaphor of Tangible User Interfaces. A Tangible User Interface gives
physical form to digital information and computation, salvaging the bits
from the bottom of the water, setting them afloat, and making them
directly manipulatable by human hands. (Ishii 2008: p. 15)

37

The theory on Tangible User Interfaces (TUI) is crucial to smart
objects, as they often also hide the intangible screen-based GUIs
behind a interface that is physical, tangible and accessible. Yet, most
smart objects come bundled with a mobile companion app that lets
the user display collected data and change configuration settings. In
the future these apps might become obsolete when these objects are
interoperable and even more embedded. Of course, in theory, TUIs
heavily link digital data to physical objects and make them more
tangible by integrating haptic feedback and providing the user with
the ability to play with the data by manipulating the objects. Still,
smart objects are more flexible and may just rudimentarily link
digital data and provide haptic feedback. Designers should still aim
for as much tangibility as possible, since it will not just make their
product stronger, but will also animate people to touch and play
with the object.

Here, we present the underlying concepts of embedded interaction, the
technological and conceptual phenomena of seamlessly integrating the
means for interaction into everyday artifacts. Technically, this requires
embedding sensing, actuation, processing, and networking into com-
mon objects. Conceptually, it requires embedding interaction into users’
everyday tasks. […] (Kranz et al. 2010: p. 46, 47)

Embedded Interaction, coined by Matthias Kranz and his col-
leagues, is a concept that takes ideas from TUI and enhances them
for smart objects. Among the various projects the paper gives as
examples, the context-aware kitchen utilities are the most interesting
ones. The basic idea of the project is that the kitchen is a social space,
therefore technology should stay hidden as much as possible to
leave room for natural interactions. The introduced objects mini-
mally augment existing objects with capabilities of sensing the user’s
actions. Sensors in the knife and the cutting board allow the system
to detect the meal being cooked and use that information to make
suggestions for other ingredients and/or possible variations. The

38

objects are very embedded and the actions are subtle, giving the user
the possibility to ignore them.

The following passage form their paper describes exactly where
the IoT is heading towards and what contribution the designer
can make in this development: “Embedding interaction in an IoT
context means integrating interaction opportunities into existing
artifacts, devices, and environments. Unlike interaction devices,
embedded interaction mostly utilizes objects people already use or
are familiar with and broadens their impact and functions” (Kranz et
al. 2010: p. 50, 51). In fact, there are so many objects surrounding
us already that have been shaped over many decades if not centuries.
The call for designers should be to stop trying to reinvent the world
on the screen with graphical user interfaces and instead turn to cre-
ating embedded interactions with already existing objects.

Whether they are interconnected light bulbs, learning ther-
mostats, money linked barcode scanners or speech controlled
automation hubs, the world is clearly rotating towards a fu-
ture where smart objects play a bigger role. These objects have
a physical representation and are full of digital technology.
They call for new concepts that define their nature and make
them understandable and usable. Earlier concepts like tangi-
ble user interfaces or embedded interactions began to uncover
the beginnings and ends of these ideas. As designers we can
use these concepts or, even better, make our own concepts
about such products and start with designing experiences and
interactions as we would like to have them. Another approach
would be to combine those theories in a holistic model that
serves as a framework and playground for experiments and
prototypes that could enable many to visualize their own
vision of a future.

43

Networked Objects
Computers have become omnipresent in our everyday life. Many

interactions with others and our environment is based on digi-
tal technology and happens through the various screens we carry
around, place in our home or have available in public spaces. Along
with computers came the increasing dependency on digital infor-
mation systems that drive many of today's processes and interac-
tions. As these binary systems are not that intelligent in themselves,
humans are needed to transcribe, translate and transfer data from
the physical world to the digital and vice-versa. For example, photos
are taken, tagged and uploaded to infinite data stores where the data
gets analyzed and distributed to others that claim interest.

Cloud-based sharing services, such as the above-mentioned photo
stream, are well designed systems that give us the ability to share
data with our friends and, through that, the sense of being more
connected and socially integrated. While this might hold true, we
pay a high price for the feeling of connectedness by spending many
hours in front of the screen to maintain our digital identity. It is
becoming more and more apparent that this has to change, not only
because the work is unpaid and flows into the pockets of others, but
more importantly because as users we should use our time to inter-
act with the world around us instead of living our lives in the virtual
concepts of an operating system.

Through the IoT, the user's work is no longer required and can
be replaced by intelligent objects that are connected to the Internet
and can share data autonomously. All the work needed to link both
worlds together is abstracted and hidden in objects that offer us
natural and embedded interactions within our environment. Taking
a picture and making it available to friends interested in our jour-
neys, might be as simple as pressing a button on the camera to make

44

the picture show up directly in a distant picture frame. Because the
camera knows its angle and location in the world, tagging is not
necessary anymore and scrolling through an endless feed of photos
becomes obsolete as it is intelligently handled for you. Applications
and services become invisible and thus leave more space for interac-
tions with the content through the physical objects.

The computerized world of today is heavily based on the availa-
bility of mobile devices, like smartphones and tablets, on which the
digital experience is given by individual applications that we install
on these devices. The screen, which is the central part of the device,
is the canvas where the human and the artificial system find com-
mon ground and communicate. While the application paints the
screen with graphical user interface elements, the human responds
by interacting with these virtual elements on the screen. All these
interactions happen in the digital space which requires the human to
adapt to a limited, artificial system.

In the future, that same experience would be given by the indi-
vidual networks of objects that reside in our environment. As these
objects are located in the physical space, this space becomes the can-
vas. Rather than downloading applications that each solve a certain
problem, we would organize objects in the space and configure them
to networks that bring us the desired benefit. On the one hand, the
hidden informations system would then paint the space using these
objects. On the other hand, the same objects would observe us to
give responses to the system. As these natural interactions would
happen in the real, physical space, the artificial systems would need
to adapt to us rather than the other way around. Suddenly, the hu-
man work of keeping both worlds in sync is not anymore necessary
but is solved by the machines themselves.

45

Feedback Loops
As mentioned above, the primary smart objects we interact with

today are smartphones and tablet computers. Their mobility, size
and versatilely is immense and they are therefore usable in many
situations. The built-in app-stores provide a sheer endless extensibili-
ty and connectivity to many services and applications in the Internet.
Mobile devices are so successful because they offer access to infor-
mation systems at any time and from any location. Yet these devices
and their applications are very traditional, screen-based and inherit
many concepts of computers as well as their problems and com-
plexity. In order to replace such closed systems with interconnected
objects that reside in the physical space and offer tangible, natural
and embedded interactions we must understand the underlying flow
of information.

The feedback loop of a smartphone and its applications is mainly
traditional (Fig. 4.1). Through interacting with the device, the user
gets access to one or more information systems. The interaction
with the information system is limited to requests that are initiated
by the user and responses that are given by the information system
and visualized by the device. With this simple interface the user is
able to retrieve data and manipulate it. The actions of browsing the
Internet on a computer or interacting with a service through a mo-
bile application are based primarily on the traditional feedback loop.
Taking the example from before we would import a picture from our
camera or shoot a photo directly with the built-in camera, into the
application where we tag the photo with meta information like the
location or hash tags. After hitting the upload button, the informa-
tion system behind will match the entered meta informations with
profiles of the other users and populate their feed. As soon as our
friends open the application on their smartphone the picture shows

46

up in their feed and from there they have the ability to call on more
functions provided by the application.

Today we can witness the first smart objects entering the market
that claim to simplify our life by automating such cumbersome tasks.
Mostly, these products are well known, everyday objects that are
connected to the Internet through embed radio chips (see chapter
3). The constant connection to the Internet allows the object to send
and receive data at any time without a previous action initiated by
the user. Most of these objects just have sensors that observe the
users or their environment and scan them for events that can be
processed and transmitted to the cloud. There are some objects that
also have actuators which can be accessed remotely and executed on
a given command initiated by the information system. Smartphone
operating systems introduced in the past years for example offer
similar functionalities by pushing notifications to the user to inform
him or her about changes in the connected information systems.
Extending the traditional feedback loop we can now speak of a “con-
nected feedback loop” (Fig. 4.2).

In a connected feedback loop, the collection of data is simplified
and automated as the object can autonomously upload sensor data
without the need for any further instructions. From the traditional
to the connected feedback loop we have therefore added the ability
of the object to communicate with the information system directly
without having to coordinate with the user. In our example, the
camera would automatically use the GPS sensor to locate the user's
position and add metadata to the picture. The camera could even be
mounted and left and thus remotely activated to take pictures and
upload them directly. On the other end, our friends would receive
notifications about new pictures that have been added to the stream.

As of now, objects that use the connected feedback loop are
mostly still screen-based so that the user has to rely on a computer,

Request

Observe

Response

Notify

Request

Response

Fig. 4.1 - The traditional feedback loop

Fig. 4.2 - The connected feedback loop

Fig. 4.3 - The networked feedback loop

Observe

Notify

49

smartphone or tablet to fully interact with their information system.
After all, a digital interface makes the interaction with a dynamic
and changing information system much easier. However, to make
the transition to objects that are truly embedded in our world, the
screen needs to be eliminated completely.

In our example we can see that taking the photo and linking it to
the user as well as the location is simple, but friends consuming the
data may have different preferences and ways to do so. To support
the individuality and personal interests of all these users the applica-
tion needs to provide features that leave room to express these needs.
On a smartphone, the user has the ability to change an application's
state every second and adjust it to his current needs. These changes
are constantly reflected on the screen and give the user a canvas
where he can explore his individuality and express his interests. As
physical objects are not digital pixels, their shape cannot change
that easily and they are therefore not able to pick up needs in such
a fast, responsive way. However, if the user could play with multiple
objects, their location in the physical space, their connections to
each other and thus their configuration, he would have the same
options to express his individuality and needs. The objects would be
networked (Fig. 4.3), able to use each others capabilities and fully
configurable by the user.

To our example, we can now add a picture frame that can be
configured to always show the last picture published to an arbitrary
feed the user has access to and of which he has one or multiple that
are programmed in different ways. By placing the frames in his
environment he has control over where the data is distributed to and
where it is available. He could then add even more objects that can
be connected to that information system, that offer a different way
of interacting with the data. Therefore, the user does not any longer
interact consciously with the information system and manipulate its
data structure, moreover he gives it permission to observe him, his

50

interactions and the environment in order to control the informa-
tion system in an inherent way. The virtual concepts of a computer
are fully abstracted into natural and embedded interactions with
physical objects.

With this paradigm in mind, many of the recently developed ap-
plications are just a step away from a future where the loop is closed
and all the data in the cloud enters the physical space again. The net-
worked feedback loop has the ability to relieve the user from inter-
acting with technology and from the requirement of understandings
its concepts and risks. Designers too are freed from designing for a
screen and its virtual interface as they now have the chance to truly
embed the technology and their service.

The interaction with digital objects will change as the
feedback loop between humans and devices takes on anoth-
er form. Rather than requesting information from remote
information systems the object will observe the environment
and react to events sensed by the device using either simple
or sophisticated sensors. This shift in the experience of digital
systems will of course bring technical as well as creative chal-
lenges. Building these networked objects that are highly inter-
operable and interconnected will demand new technologies,
standards and tools. Designers will need to think about their
products in a greater context, where the user gives meaning to
the products through his individual configuration. Principles
about functionality and interactivity need to be redefined
and adapted to this new idea of symbiosis of the digital and
physical space.

55

Designing Networked Objects
The 10 principles of good design: 1. Good design is innovative; 2. Good
design makes a product useful; 3. Good design is aesthetic; 4. Good de-
sign makes a product understandable; 5. Good design is unobtrusive; 6.
Good design is honest; 7. Good design is long-lasting; 8. Good design
is thorough, down to the last detail; 9. Good design is environmentally
friendly; 10. Good design is as little design as possible; (https://www.
vitsoe.com/gb/about/good-design)

Dieter Rams is a pioneer in designing objects that include new
technology and are focused on the consumer home market. His
iconic designs for several end-consumer products like radios, TVs,
shavers, Hi-Fi systems and many more are famous. His simple and
strict style was an inspiration to many designers and with the “10
principles of good design” he shaped his legacy and became an idol.
His rules also form a good starting point for designing networked
objects which are actually not that different to the objects that Rams
used to design in his career.

In general, there are no specific rules for designing a networked
object, except that it must be physical and include some kind of dig-
ital connection. When designing such an object however, a designer
will encounter several design questions that apply mainly to net-
worked objects, such as “What is the core functionality?” or “What
is configurable and how?”. The following section will look at various
topics that will arise during the design process. Of course, design is
individual and every idea is different, therefore the following sug-
gestions are to be seen more as guidelines than rules. Together, these
guidelines form a reusable framework of topics that can be applied
to the design process of networked objects.

56

Functionality
The idea of networked objects is that they are simple, provide a

limited set of features and are interoperable with others. The goal is
less to design smartphone-like objects that have lots of functionality
but more to aim for small objects that become “big” through their
ubiquitous application. Similar to the Unix1 philosophy we can
state: “Design networked objects that do one thing and do it well.”
Focusing on a distinct set of core functionalities will leave more ca-
pacity to go into details and thus perfect the user experience. While
the amount of features of each individual object might be limited,
the system formed by all networked objects together, has a rich set
of functionalities that are more comparable to a smartphone or a
classic computer. It is normal that a networked object might be seem
very simple and dull by itself, but that the system consisting of many
objects becomes more complex and interesting.

The company “Edyn” for example created a set of products that
help manage an outdoor garden. The first product called “Garden
Sensor” (Fig. 5.1) measures the conditions of the soil and the
weather. The second product is a water valve that can be controlled
remotely. Through interconnecting several “Edyn objects” the user
can build a system that will automatically water his garden. For
fine-grained control and analysis the user can access his system via

1	 The Unix philosophy, originated by Ken Thompson, is a set of cultural
norms and philosophical approaches to developing small yet capable
software based on the experience of leading developers of the Unix
operating system. Early Unix developers were essential for bringing
the concepts of modularity and reusability into software engineering
practice, spawning a “software tools” movement. (http://en.wikipedia.
org/wiki/Unix_philosophy)

57

a mobile and desktop interface. The example clearly shows that the
individual objects in itself is not that technologically advanced but
the overall system is. Taking that ideology we can formulate the first
guideline: Functionality can be distributed among multiple objects,
leaving the individual networked objects simple and comprehensible.

Certainly, not every feature can be transferred entirely to the
physical space. In applications or systems that serve both the ama-
teur and the specialist, an unrestricted access to its internal system is
often inevitable. Additional screen-based solutions like mobile and
desktop applications can therefore be considered to complete the
experience. This concession leads us to the next guideline: While
networked objects provide functionality on their own or as a net-
worked system, mobile and desktop applications provide in-depth
access and insights for professional users.

Interactivity
Networked objects themselves and the systems consisting of

multiple networked objects are interactive systems. Their interactiv-
ity does not stem from the combination of a physical object with a
digital connection. Moreover, they are interactive because of their
characteristic to abstract and handle things automatically. To do
so, the objects and especially the information systems in the back-
ground need to process and analyze behaviors to recognize patterns
and adapt to the environment. In that sense, a system consisting of
multiple networked objects is an artificial, self-regulating learning
system (Dubberly et. al 2009). Humans too can be viewed as self-reg-
ulating learning systems that, when interacting, converse with each
other and with other systems:

58

This type of interaction is a like a peer-to-peer conversation in which
each system signals the other, perhaps asking questions or making com-
mands (in hope, but without certainty, of response), but there is room
for choice on the respondent’s part. Furthermore, the systems learn from
each other, not just by discovering which actions can maintain their
goals under specific circumstances (as with a standalone second-order
system) but by exchanging information of common interest. They may
coordinate goals and actions. We might even say they are capable of
design—of agreeing on goals and means of achieving them. This type of
interaction is conversing (or conversation). It builds on understanding
to reach agreement and take action. (Dubberly et. al 2009: p. 75)

The “Aether Cone” (Fig. 5.2), a combination of loudspeaker and
intelligent music player, is a good example for a networked object
that stands in a conversing relationship with the user: “Cone is the
first music player that thinks. It listens to your requests, picks up on
your habits, and learns your tastes to create the perfect soundtrack
for any mood or moment.” (http://www.aether.com) In fact, whenev-
er you change to another track by either turning the rim or naming
one using the integrated speech recognition module, the object will
remember the settings and create a listening profile. The next time
the system gets activated on a Sunday morning for example, it will
play music related to the last Sunday morning session. In that way,
the Cone is learning about the user’s habits and patterns, while the
user is also learning about the Cone’s algorithm and implementation.
Over time, both will be able to understand each other quicker and
more precisely. This kind of interaction opportunity reveals another
guideline: The interaction between a single networked object or a
system of many and the user can take the form of a conversation in
which both sides learn from each other and understand each other’s
behaviors.

Fig. 6.1 - Edyn Garden Sensor

Fig. 6.2 - Aether Cone

Fig. 6.3 - Droplet on a Trash Bin

Fig. 6.4 - A Mother and her Cookies

61

Configurability
Another important design aspect of networked objects is configur-

ability. As defined earlier, the physical space is the canvas where the
networked objects and the user meet and interact. In that sense, the
act of configuring, which is traditionally done by toggling buttons
on a screen, now happens through placing, attaching and integrating
objects in the physical space. The “Droplet” (Fig. 5.3) for example
is an attachable button that helps keep track of recurring tasks.
Creating or configuring this “To-Do” list can be done by simply
attaching the button to an object and setting a timer using the
smartphone app. In the future, that last step might be replaced with
a simple controller on the button, so that the configuration is inte-
grated in the object. Anyhow, the example shows quite clearly that
the user could configure such a system by working solely with the
physical objects: Networked objects offer configurability by allowing
the user to place, attache and integrate them with the physical space
and by having a few physical controls for fine adjustments.

Topology
Every user and environment is unique. If not pre-defined, the

topology and location of networked objects within the user’s space
is completely up to him and his needs. The design of networked
objects can give hints and lead users towards putting the objects in
the intended spots. The design should support any possible variation,
giving as much freedom as possible. A simple way to control and
lead the user towards a meaningful topology of networked objects is
by assembling and distributing packages that are targeted to various
use cases. While experienced users can buy the objects individually,
newcomers can buy a kit that is tailored to a certain common use

62

case. Such a package would include the necessary objects and guides
to get started.

An illustrative example here is the object tracking system “Mother”
(Fig. 5.4) by Sen.se. The product consists of a controller, the Mother,
that observers many “cookies” which are attached to things by the
user. As the equipped objects are used by the user, the cookies send
data to the mother, which processes that information and makes it
available to other systems. The starter set includes the controller as
well as four sensors, with which the user can already start to build
his system. To expand the experience the company offers additional
packages of sensors to integrate even more objects. From that we
can derive the last guideline: Tailored packages of networked objects
give the user an example of a topology of objects that can then be
extended with additional packages.

Networked objects bring about new design challenges in
the areas of functionality, interactivity, configurability and
topology. As we are dealing with a fairly recent field, we can-
not look back on several decades of learnings and best practic-
es. However, the guidelines outlined in previous chapter give
a starting point from which further discussions can originate.
Apart from looking at the above-mentioned challenges, the
most crucial part of designing networked objects is the overall
system experience. What rules are involved when functionali-
ty and thus interactivity and configurability are spread among
multiple devices that may not even be in the same room?
Such a system experience can only be devised if the designer
has the ability to explore the possibilities and play with the
objects as the end-user would do. Prototyping these objects
will be a very important part of a successful design process.

67

Prototyping Networked Objects
We can look at prototypes as both concrete artifacts in their own right
or as important components of the design process. When viewed as
artifacts, successful prototypes have several characteristics: They support
creativity, helping the developer to capture and generate ideas, facilitate
the exploration of a design space and uncover relevant information
about users and their work practices. They encourage communication,
helping designers, engineers, managers, software developers, customers
and users to discuss options and interact with each other. They also per-
mit early evaluation since they can be tested in various ways, including
traditional usability studies and informal user feedback, throughout the
design process. (Beaudouin-Lafon et al., 2000: p. 2)

What Beaudouin-Lafon & Mackay are describing here is a stage
that many design fields incorporate in their daily design process.
Especially in the educational context, where new technologies are
often experimented with, a prototype allows for a quick evaluation
of those technologies and their potentials. A design process that
uses prototyping methods in all stages, from sketching the first idea
to reaching a final product, can also be called “a prototype driven
design process”. The advantage of a prototypical approach is that
the designer needs to think in a more applied rather than abstract
way. Thus, ideas become real artifacts instead of remaining concep-
tual theories that float about and are difficult to discuss with other
stakeholders.

In its fundamentals, a prototype driven design process is a con-
scious, iterative design process (Nielsen 1993). Starting with a vague
idea and stopping when a satisfying result has been created, the
designer builds a prototype for each iteration. Between the iterations,
in the evaluation phase, the designer also reviews the used tools and
methods and may change them for the next iteration. The artifacts

68

generated during these iterations can be used later to review and
track the whole design process.

Building prototypes has the beauty of being very reactive. As
the designer is forced to articulate his ideas, the design space gets
explored in all crucial directions. The process of building the pro-
totypes and the result itself show various alternative design paths,
which can be further evaluated. Based on the built prototypes, the
evaluation with the target group or space and the discussion with
stakeholders is honest, focused and constructive. All these qualities
empower the designer to easily compare ideas and implementations
and thus decide on which steps to take next. In that sense, every de-
signer should be encouraged to build as many prototypes as possible
on their way to finding the ideal solution to their design problem.

Building a prototype should ideally consume only a fraction of
the project’s overall budget. However, prototypes have the reputa-
tion of being time consuming, especially when it comes to projects
in which technology plays a primary role. If the cost-efficiency is too
low or the risk of not being successful is too high, designers tend
to fall back on more classic design methods. This problem has been
identified and responded to with a new technique called “Rapid
Prototyping”, that enables designers to be faster, more efficient and
take lower risks. Today we have an emerging industry that focuses
on developing various prototyping tools for every kind of disci-
pline. With the increasing amount of available tools and techniques,
designers can explore more and more aspects of the prototype driven
design process.

Looking back several years in the field of interaction design
and physical computing we see that a prototype driven design
process has become more and more a standard. This has mainly
been enabled by tools like Processing, Arduino and 3D Printing,
which abstract and simplify a technology or process that is usually

69

inaccessible for designers (Banzi 2011). The development of such
tools allows designers to extend their creativity and easily learn and
leverage new technologies.

Processing relates concepts of software to principles of visual form,
motion, and interaction. It integrates a programming language, devel-
opment environment, and teaching methodology into a unified system.
Processing is created to teach fundamentals of computer programming
within a visual context, to serve as a software sketchbook, and to be used
as a production tool for specific contexts. It is used by students, artists,
design professionals, and researchers for learning, prototyping, and
execution. (Reas et al. 2006)

The Processing language by Casey Reas and Ben Fry is a phe-
nomenal example for a technology-driven yet simple design tool.
By wrapping the complex process of writing and compiling a java
program into a simple graphical user interface and introducing a
simple language for drawing on a canvas, designers that did not
program before suddenly started to visualize their ideas through
code. Furthermore, the tool allowed designers to go into fields like

“Generative Design” (McCormack et al. 2004) that seemed quite
impervious before.

The same holds true for the Arduino project: “The Arduino phi-
losophy is based on making designs rather than talking about them.
It is a constant search for faster and more powerful ways to build
better prototypes. We have explored many prototyping techniques
and developed ways of thinking with our hands. (Banzi 2011)”
Indeed, the Arduino project encouraged a considerable amount of
designers to start playing with electronics. Especially the fairly recent
field of interaction design benefited from that development, as
students are now able to quickly create objects that can interact with
the physical world.

70

Prototypes of Networked Objects
Networked objects are located at the border between the physical

and digital space. They do not only interact with both spaces, but
also link them together by bringing the digital into the physical and
vice-versa. This implicates engineering tasks towards hardware in the
physical space and towards software in the digital space. Therefore,
a networked object always includes software development and the
building of a physical object. On the one hand, the networked ob-
ject is responsible for translating events that happen in the physical
space to input for the information system in the digital space. On
the other hand, the networked object also translates output by the
information system to actions that are executed in the physical space.
The distinction between event-action and input-output is important
as it emphasizes the role of the networked object as a translator (Fig.
6.1) and encourages the designer to think about the two pairs in
different ways.

Using the example from before, an event would be the mechanic
trigger of the camera which signals the networked object to take a
photo, gather all available data and finally send it to the central ser-
vice. Pressing the button is the physical event that gets transformed
to a digital output. From the perspective of the information system
the picture is the input that gets processed and routed to picture
frames that are subscribed to the feed. These networked objects
receive the picture as an input and translate it to an action that will
change the content of their physical display.

Technically, the networked object can be divided into two main
components (Fig. 6.2), the “event-action interface (EAI)“ and the

“input-output logic (IOL)”. The EAI consists of several sensors,
which can measure and detect events and actuators that can execute
actions. The interface may vary from being very simple to being a

Event OUTPUT

INPUT
Action

Fig. 6.1 - The networked object as a translator

Fig. 6.2 - The components of a networked object.

Interface Logic

73

complex arrangement of many sensors and actuators. The IOL rep-
resents the networked object in the digital space. Events emitted by
the EAI are managed and further forwarded by the IOL. The main
role of the IOL is to make the raw and unfiltered EAI data available
to other networked objects and information systems. This step of
preprocessing is necessary to allow other networked objects to use
the data in a more abstracted form, rather than dealing with input
fluctuations or other technical details. The separation is straight
forward as the EAI is the hardware needed to sense and act upon the
environment, while the IOL is the software that deals with the com-
munication with other networked objects and information systems.

The camera’s EAI would be the photographic system itself, the
GPS transmitters and the buttons used to take a photo and make
fine adjustments. As not every little event or data is important to
further processing, the IOL combines and simplifies the raw data
to packets that are interpretable by other systems. In our example
such a packet would be a picture with embedded meta informations.
The picture frame on the other hand might be very simple as the
received picture will be merely put on the display and the data does
not need any special transformation.

The EAI is most likely an electronic circuit with sensors and actu-
ators, whereas the IOL is a program that runs mainly on a computer
or microprocessor. Depending on the project we might also have an
information system that coordinates and stores information running
on a personal computer or server. While all these parts can reside in
different locations when building a prototype, a final product means
that the EAI and IOL are combined together to a miniaturized
printed-circuit-board and the information system is running in a
high-available data-center.

Building the EAI is the easiest when using an electronics proto-
typing platform like Arduino. Numerous components and libraries

74

allow a designer to quickly sketch an electronic circuit and give
him the possibility to interact with the user or environment. If the
project is simple enough, the IOL can be programmed directly on
the Arduino. If the project gains in complexity, the data can be
forwarded to a computer where it gets processed by a higher order
application written for example in Processing. Processing is a very
good tool when it comes to developing a small, central information
system that manages data coming in from multiple objects. In order
to build bigger systems, web application frameworks like “Ruby
on Rails” or platforms like “node.js” are recommended. However,
detailed explanations about these tools go beyond the scope of this
thesis.

Prototyping has become an almost standard stage in most
design processes. Rapid prototyping tools allow designers
to conveniently express and transfer ideas into a working
physical representation. As designers we should make use
of such rapid prototyping tools as quickly as possible, since
the communities behind them provide a lot of stability and
reduce the risk of a potential failure. In regards to building
prototypes of networked objects, we now have multiple
sensing and acting objects, an appropriate design strategy and
maybe even an informations system that is ready to process
data. However, there is one thing that remains unsolved: How
can we network all these things together in an easy way?

79

The Missing Link
Machine to Machine (M2M) refers to technologies that allow both wire-
less and wired systems to communicate with other devices of the same
type. M2M is a broad term as it does not pinpoint specific wireless or
wired networking, information and communications technology. This
broad term is particularly used by business executives. M2M is consid-
ered an integral part of the Internet of Things (IoT) and brings several
benefits to industry and business in general as it has a wide range of
applications such as industrial automation, logistics, Smart Grid, Smart
Cities, health, defense etc. mostly for monitoring but also for control
purposes. (http://en.wikipedia.org/wiki/Machine_to_machine)

The industry picked up on the need for technologies to con-
nect constrained and small devices with each other a long time
ago. Research was mostly done in the field of “M2M” which, as
described above, is broad and includes many other IoT related areas.
The core assumption is based on the fact that an ubiquitous commu-
nication infrastructure, which is the basis of any IoT and Ubicomp
concept, will firstly need low-cost radio modules to bring connec-
tion to any object and secondly, services that make sending data
between any amount of these devices as easy as sending an E-Mail.
As usual, scientists and the industry think big and aim at solving
all problems at once by researching technologies such as “IPv6”
and “6LoWPAN” 1 (Minoli 2013) that should bring ubiquitous

1	 IPv6 is the successor of the IPv4 protocol that we use today to connect
to the Internet. As the address space in IPv4 is limited and soon
depleted, the IPv6 protocol will provide enough unique addresses for
a long time. With 6LoWPAN, even devices that are very constrained
and limited should have a unique address and be part of the Internet
and thus the IoT.

80

connectivity to all devices in the future. However, the proliferation
of those technologies depends heavily on telecommunication com-
panies that are commissioned to build the Internet itself. Therefore,
common usage of those technologies may still be postponed to
several years or even decades from now. While those companies still
dream big and look towards the real ubiquity of communication, we
already have many application developers that want to build inter-
connected products today.

The market for applied M2M and IoT technologies has heavily
grown in the past decade and now offers technologies for everyone
from professionals building the next smart object to tinkerers that
want to play with such future technology. Companies emerged that
provide micro-controllers with integrated radio modules while soft-
ware companies are building cloud infrastructures to connect mil-
lions of devices. What still remains undecided however, is the meth-
odology of how these devices should actually communicate which
each other — the protocols. They are the pinholes that control the
transport of data from the little embeddable chip to the sophisti-
cated software that runs in a data center. Without going into many
details, one can state that the complexity in defining such protocols
is that the developers need to assess the prospects of the architecture
of future networks. This assessment is mostly based on individual
assumptions and brings with it discussions such as whether sensors
should be connected locally over some proprietary radio frequencies
or connected to the Internet. Nevertheless, what we remember from
the beginning of the Internet as the “protocol wars” (http://www.
computerhistory.org/revolution/networking/19/376) is happening all
over again for the IoT, but in an even more complex manor.

Although the market changes fast, things have become easier and
more comprehensible in the past years. Recent developments in
the prototyping and do-it-yourself (DIY) sector gave us hardware

81

platforms (Fig. 7.1) like the “Raspberry Pi1” , the “Arduino Yun2”
and most recently the “ESP82663”. These platforms are all easy to
program microprocessors with the built-in ability to connect to the
Internet. Using an “Integrated Development Environment (IDE)”,
like the one from Arduino, the writing of programs for these pro-
cessors is equally simple as writing a Processing sketch. To enable
newcomers to start easily with these boards, the already strong but
still growing community provides many tutorials, guides and screen-
casts that elaborate on the specifics. Along with the community
came many shops like “Sparkfun”, “Adafruit” and “Seeedstudio” that
sell boards, components and other components you need to develop
these kinds of projects. The simplicity of these products also caught
the attention of professionals that are accustomed to complex and
proprietary platforms. Fresh companies like “spark.io4” provide sim-

1	 The Raspberry Pi is a low cost computer that can be used with stand-
ard peripherals like monitors, keyboards and alike as it runs Linux
based operating systems. Its size as well as the ability to connect also
other low-level components makes it a good tinkering and learning
platform.

2	 The Arduino Yun is the combination of an standard Arduino and a
WiFi chip that runs a linux based operating system mostly found in
router hardware. Through a simple interface every Arduino sketch can
connect to the Internet and upload and download data.

3	 The ESP8266 is a special WiFi module that has space for custom pro-
grams. It is a very small chip and does not have a lot of interfaces, but
its cheapness and ability to be programmed with the standard Arduino
IDE makes it a powerful component.

4	 The company Spark offers hardware as well as cloud services that can
be used to manage the deployment of many “sparks”, upload a new
firmware over the air or transmit data to the in-house aggregation
services.

82

ilarly simple platforms that are targeted at professionals and enter-
prises that deal with way bigger amounts of devices than hobbyists.

A similar story can be told about softwares and services that sim-
plify collecting and processing data from multiple devices. As profes-
sional services are not very useful to designers and tinkerers due to
their complexity, they started to build platforms themselves that aim
at the DIY and art sector. One of the first of its kind was “pachu-
be” (Fig. 7.2) developed by Usman Haque, a know IoT and design
researcher. The web service allowed everyone to connect multiple de-
vices that stream sensor data to the platform, where it can be shared
with others and even used to control actuators. The platform oper-
ated on the specially developed “Extended Environments Markup
Language (EEML1)”. Pachube was a great success even if the EEML
protocol was a little too expressive and therefore didn’t get widely
adopted. However, the community was growing and many people
started to add their sensors and collect any kind of data. Before the
platform was bought and relaunched under the name “Xively” the
community used it heavily to log environmental data for example
during the radiation crisis in Japan.

The acquisition of pachube left a gap in the toolset used by many
around the world to explore the possibilities of the IoT. But soon
other platforms launched and continued where pachube had left off,
trying to provide similar and extended services. These alternatives

1	 EEML supports installations, buildings, devices and events that
collect environmental data and enables people to share this resource
in realtime either within their own organizations or with the world as
a whole via an internet connection or mobile network access. It can
enable buildings to “talk”, sharing remote environmental sensor data
across the network in order to make local decisions based on wider,
global perspectives. (http://www.eeml.org)

Fig. 7.1 - A Raspberry Pi and Arduino Yun

Fig. 7.2 - The pachube platform

Fig. 7.3 - The IoT Landscape

85

provide mostly proprietary “web API’s1 ” that are hard to learn and
hinder developers in switching to competitors easily. Looking again
at the world of web application development, similar problems
have been successfully solved in the past years. New services like

“Heroku2” and “GitHub3” provide straight-forward platforms which
can be appropriated in minutes and are based on standards that let
developers switch between different providers. The ongoing compe-
tition results in better services for developers and allows them to be
faster and more efficient. Cleary, this development has to happen
also in the IoT field. The most critical part to this endeavor is find-
ing a simple, widely adopted and easy-to-learn protocol that is open
and does not show limits in any direction.

1	 A server-side web API is a programmatic interface to a defined re-
quest-response message system, typically expressed in JSON or XML,
which is exposed via the web — most commonly by means of an
HTTP-based web server. (http://en.wikipedia.org/wiki/Web_API)

2	 Heroku (heroku.com) is a platform as a service (PaaS) that allows
developers to host their web applications by simply connecting their
code repositories to the service. On every change in the repository, the
platform automatically takes care of updating the running applications.

3	 GitHub (github.com) is platform that allows developers to host their
code repositories. Besides versioning every little change on the code-
base, the platform provides complementary features that simplify the
process of developing big applications. The openness of the platform
has allowed it to become the number one open-source project hosting
service in the world.

86

The Killer Protocol?
Building prototypes of networked objects includes sending data

between any number of these objects and higher order applica-
tions running on a computer or server. As microprocessors like the
Arduino have limited program space and memory, the protocol we
are looking for needs to be very small and simple. More important-
ly we need to be able to send messages in real-time between the
networked objects. For example, the effects of interacting with one
object should be instantly visible on the other object. Lastly, the pro-
tocol should be able to allow transportation of any kind of data like
images, text or numbers. This becomes important when we venture
into the arts, where ideas may be more abstract and may not be cov-
ered by protocols like EEML that concentrates on applied use cases.

Looking at the IoT technology landscape (Fig. 7.3) today we see
that there are many possibilities to transport data from the device up
to the cloud (session communication). Unfortunately, most of these
protocols are rather bloated and complex and are not suitable for
the kind of experimentations we are looking for. Also HTTP, which
is the de facto protocol of the Internet, lacks features that allows
sending messages in real-time. However, there is one protocol called

“Message Queue Telemetry Transport (MQTT)” that supports the
previously stated requirements:

MQTT is a machine-to-machine (M2M)/“Internet of Things” con-
nectivity protocol. It was designed as an extremely lightweight publish/
subscribe messaging transport. It is useful for connections with remote
locations where a small code footprint is required and/or network band-
width is at a premium. For example, it has been used in sensors commu-
nicating to a broker via satellite link, over occasional dial-up connections
with healthcare providers, and in a range of home automation and small

87

device scenarios. It is also ideal for mobile applications because of its
small size, low power usage, minimized data packets, and efficient distri-
bution of information to one or many receivers. (http://mqtt.org)

MQTT facilitates the publish-subscribe pattern (pub/sub) (Fig.
7.4) which is a well-known messaging pattern that allows sending
messages between an arbitrary amount of clients. In order to send
and receive messages, clients have to connect to a central broker
that manages the flow of messages. After that, connected clients
can publish messages that, for example, include current sensor
readings, detected events or similar information. Each message has
to be associated to a specific topic which can be made up by the
designer much like a hashtag on twitter. Clients that are interested
in certain messages can then subscribe to these topics and receive
all subsequently published messages. The topic tree structure (Fig.
7.5) allows clients to communicate without needing to know who
is receiving their messages. This “loose coupling” is very helpful in
situations where components get developed independently and put
together later in the process.

While the first version of MQTT already appeared in 1999, it did
not make its breakthrough until 2013 when IBM submitted a final
draft for standardization. In the meantime, many developers started
to build client libraries that allow connections from any kind of
software and hardware platform including Processing and Arduino.
However, there is still one drawback that might hinder people
from using it for their experiments and prototype development:
Configuring and installing a broker needs a lot of resources and
understanding of low-level system architecture. Also, renting a server
and maintaining it is another obstacle for many out there who just
want to play around a little bit. A service was needed that abstracts
this tedious work and lets people simply use this technology in their
projects, at best even for free.

88

The shiftr.io platform
With shiftr.io the process of interconnecting objects, devices and apps
becomes more accessible and less complex. Regardless of wether you
are building an interactive installation, prototyping the next connected
product or simply playing around with new technologies, shiftr.io lets
you add connectivity to your project in an early stage. As a service, shiftr.
io provides a rich publish/subscribe communication infrastructure, that
is accessible through various protocols. A custom broker engine enables
the built-in realtime graph that visualizes all events happening in your
namespace. As a platform, shiftr.io provides you with the ability to share
your data and access data of others. Sharing data publicly is encouraged
by the platform’s design. In the future, we plan to have additional fea-
tures that allow more interactions between users and their namespaces.
Using shiftr.io everyone is able to rapidly prototype connected objects
and build a network of connected things. Start building prototypes for
the Internet of Things now! (https://shiftr.io)

The shiftr.io platform (Fig. 7.6) basically provides an MQTT
broker with the simplicity of a click, eliminating the need to install
any software or maintain a server. It follows the concept of offering
a service that provides the resource “connection” for any kind of
project. Any developer or designer can register for a free account on
the website and create an unlimited amount of “namespaces”. Each
of those namespaces is isolated, has its own topic tree and acts as
a virtual broker. Therefore, the user does not need to think about
hardware resources or costs of maintaining a server, but can simply
use as much connection resource from the service as he needs. As of
now, shiftr.io even provides these services for free.

As a platform, shiftr.io tries to extend the basic functionalities of a
broker with tools that support the developer in his process of build-
ing a networked object. The real-time graph (Fig. 7.7) is the most

Broker

(Sensor1)
CLIENT

(Sensor2)
CLIENT

CLIENT
(App2)

CLIENT
(App1)

subscribe

s
u
b
s
c
r
ib

e

Publish

P
u
b
l
is

h

sensors / 1 / temp

sensors / 1 / *

sensors / * / temp

sensors / 2 / temp

value: 11.7

value: 14.3

sensors

voltage

temp

temp

position

3

2

1

(root)

sensors / 1 / temp
sensors / 2 / temp

sensors / 1 / positon
sensors / 3 / voltage

Fig. 7.4 The Publish-Subscribe Pattern

Fig. 7.5 Example Topic Tree

Fig. 7.6 - The shiftr.io Platform

Fig. 7.7 - The Real-Time Graph

Fig. 7.8 - The Chart Feature

91

central feature and allows for a live visualization of all data flowing
in a namespace. The force-directed graph that is based on a physical
model shows the topic tree structure, all current connections, their
relations to the tree and messages flowing through the system. This
feature is very important to newcomers that are learning to under-
stand how the pub/sub system works as well as for professionals that
need to debug or observe a running system. Yet the most impor-
tant things in a communication system are the messages that get
exchanged between devices. In most use cases we send numerical
values, like the temperature reading of a sensor or the level of a knob
on a control panel. To support working with that kind of data, the

“chart” (Fig. 7.8) feature allows specially marked topics to be viewed
as a line diagram that represents the numerical values published to
the topic over time.

Having a broker as a services that includes custom-made addi-
tional features makes shiftr.io an important component of every IoT
project. The MQTT protocol on which shiftr.io is based has been
widely adopted in the past years, causing many developers to write
libraries for various hardware and software platforms. The libraries
for Arduino and Processing are simple and intuitive and can be
added to a project within minutes. In that sense, a mix of Arduino,
shiftr.io and Processing is a good starting point for prototyping
networked objects.

After having defined the tools we need to build prototypes
of networked objects quickly, we now have a way of network-
ing them together. On top of this, the shiftr.io platform and
the MQTT protocol bring the ability to build the compo-
nents individually and later couple them together. This fea-
ture might become very important to building prototypes of
networked objects as they tend to be technologically complex
and not built by one designer herself. A design method that
combines the theoretical model proposed before as well as the
presented prototyping tools could support designers in find-
ing an appropriate design process to build such networked
objects. The method should help with exploring, planning
and handling a design space and its vision.

95

Networked Exploration
Designing a networked object is not an easy task, as there are

many design questions to solve and the object itself might be rather
complex. In many cases, the designer might not even have a con-
crete idea in mind about how the particular object could work and
look like. Luckily, the communities behind the prototyping tools
and rapid prototyping techniques mentioned in the last chapter ena-
ble designers to use prototyping as a way to explore a design space by
building objects and to learn more about their form and functional-
ity while building them. Such a design process can be very powerful
for design spaces that are hard to grasp fully and explore beforehand.
As developing networked objects brings up many design challenges
like privacy, latency, complexity and interusability a prototype-driv-
en design process is very reactive to those influences (Rowland et al.
2015).

The design method “Networked Exploration” supports the design-
er in developing his design space through multiple iterations into
networked objects. The individual stages are not a strict framework,
they are more of a recipe that can be taken as it is or adapted to the
specific situation.

The design method introduces a design process (Fig. 8.1) where
the designer is generally forced to focus on prototyping the individ-
ual components of a networked object, rather than obsessing over
the final outcome. This eliminates the risk of stopping to discuss
the meaningfulness of the still intangible experience, relieves the
designer of thinking too far ahead in a way too early stage and lets
him parallelize work better in a team. To help uncover the necessary
components and thus work units, the design space is organized first
using the “Event-Logic-Action Board (ELAB)” (Fig. 8.2). The ELAB
is inspired by the project management technique Kanban which
helps organizing a team and structuring a development process

96

(Oza et al. 2013). Just like Kanban, the ELAB also uses cards that
represent a unit of work, which in our case would be an event, logic
or action component. Filling out these cards will help the team to
formulate the individual components and to get a big picture of
their goal. The board does not just help finding these components,
moreover it should also aid throughout the process and serve as a
central point where the team can agree on ideas and incrementally
plan the project.

The designer starts with a defined design spaces that includes
background research, mood-boards, videos and notes to a certain
topic chosen by himself. From this material he defines multiple,
different event, logic and action components that his networked ob-
ject could be made of. By noting down each individual component
onto a card, he creates the ELAB. After selecting a first set of events,
logics and actions, the designer builds a prototype for each one of
those components, which allows him to test them individually. After
that, he will assemble at best two or more networked objects out of
these working components. In the next step, the designer networks
the prototypes together and complements the whole experience. The
resulting system is then applied to the target environment and eval-
uated. The gained insights and learnings are merged with the design
space and used to refine the concepts. Then, a new loop begins in
which the designer repeats the steps above. The overall idea is to
go through the whole loop as many times as possible and to master
each stage as fast as possible. In later iterations more attention to
details can be given to reach a higher quality.

The following sections explain the individual stages of the design
method on the basis of the project Eden, a networked plant pot. The
premise of this project was to create a plant pot that is capable of
managing itself and can control water irrigation by reminding the
owners if conditions get too bad. It was important to find natu-
ral and embedded alternatives to traditional sensor-smartphone

Design Space

Explorable Application

Event-Logic-Action Board

Networked Objects

Individual Experiments

Selected Components

Assembled Objects

Fig. 8.1 - The Individual Stages of the Design Method

TITLE

NOTESSKETCH

EVENT LOGIC ACTION COST

Soil Moisture

Using two rods the
resistance of the
soil can be meas-
ured. As the re-
sistance changes
depending on the
watering, we can
build a working
moisture sensor.

TITLE

NOTESSKETCH

EVENT LOGIC ACTION COST

Ambient Brightness

Using a photocell
diode we can meas-
ure the availability
of light. However
there is no distinc-
tion between sun-
light and artifical
light. But for a pro-
totype that would
be enough.

TITLE

NOTESSKETCH

EVENT LOGIC ACTION COST

Air Temperature

Using a tempera-
ture sensor we can
easily measure the
temperature of the
air.

TITLE

NOTESSKETCH

EVENT LOGIC ACTION COST

Touch

Using the capac-
itance law we
should be able to
somehow detect
touching of the pot.

TITLE

NOTESSKETCH

EVENT LOGIC ACTION COST

CO2 Saturation

If there are sen-
sors we might be
able to also sense
the CO2 saturation
of the air.

TITLE

NOTESSKETCH

EVENT LOGIC ACTION COST

Health Monitoring

All sensor read-
ings are constantly
monitored to de-
tect if the plant is
not enough watered,
has not enough
light or the tem-
perature conditions
are bad,

TITLE

NOTESSKETCH

EVENT LOGIC ACTION COST

Status Display

The status display
can on request dis-
play the status of
the plant and its
conditions.

TITLE

NOTESSKETCH

EVENT LOGIC ACTION COST

Alarm Forwarding

If the health con-
dition of the plant
is bad and rached
a certain thresh-
old the pot will
emit and alarm that
also gets picked up
by other plants.

TITLE

NOTESSKETCH

EVENT LOGIC ACTION COST

Sound Generator

The sound gener-
ator can be used
as another signal
channel.

TITLE

NOTESSKETCH

EVENT LOGIC ACTION COST

Alarm Forwarding

If the health con-
dition of the plant
is bad and rached
a certain thresh-
old the pot will
emit and alarm that
also gets picked up
by other plants.

Fig. 8.2 - The ELAB from the Eden Project

Fig. 8.3 - A single ELAB Card from the Eden Project

99

combinations that are available today. Finally, by networking the
pots together, they should act as a system and support each other
when for example a plant has been forgotten and its conditions are
bad. In collaboration with inhabitants, the product can revegetate
big modern buildings that lack green and have no central resources
to cultivate such plants throughout the building.

1. Analysis of the Design Space and Mapping of
Components Using the ELAB

In many cases designers start by defining a design space that
includes all necessary information and material around the topic
or field they would like to investigate. This process is inevitable
and should be executed carefully to create a stable groundwork for
the project to grow on. Now, as a first stage of the design method,
the designer can analyze his design space and assemble the ELAB.
When defining the individual event, logic and action components
he should not think about feasibility or time constrains but sim-
ply focus on finding all possible components his objects could be
made of. Apart from formulating the ideas, the designer can already
roughly estimate the costs of these features by filling out cost bar at
the bottom-right of the card (Fig. 8.3).

The ELAB (Fig. 8.2) of the Eden project is very conservative and
includes components with a low cost due to the project's one week
time frame. Obviously, this project has an emphasis on events as
observing the plants' condition is a key element in the project. From
the definition of the design space it was already clear that a visual
way for displaying the plants' conditions was intended, however
the ELAB also includes an alternative auditory action that could be
investigated optionally.

100

2. Selection of the First Set of Components From the
ELAB

By selecting a set of components from the ELAB the designer
starts one iteration of the process. Depending on the cost of the
individual components and the available time frame, a designer may
chose just a couple or several components to start with. It is recom-
mended however to select at least one event and action so that the
networked object is interactive and better testable later on in the
process.

For the first iteration of the Eden plant pot the “moisture sensor”,
“touch sensing”, “health monitoring” and “status display” component
was chosen with a rough schedule of one and a half days.

3. Experimenting and Prototyping of the Individual
Components

After selecting components, the designer can focus on these
individually and build first prototypes. Events and actions can be
built easily with tools like Arduino and some electronics, whereas
basic logic components can be developed using Processing or similar
frameworks. To get a first feeling for the resulting interactivity it is
recommended to already use a tool like shiftr.io to network the ex-
periments together. That way the designer can improve them hands-
on without having to fake any features. The lose-coupling approach
also helps with parallelizing the tasks and putting the things together
easily.

The moisture sensor (Fig. 8.4) for the Eden plant pot was devel-
oped after a tutorial found on the Internet which simply uses two
metal nails that measure the resistance of the soil between the two
rods. The circuit was complemented with an Arduino Yun that
uploads the values every second to a shiftr.io namespace. Using the

101

real-time visualization features, the values can be reviewed online.
The pre-produced display ring (Fig. 8.5) was then connected to
another Arduino Yun, taking care of displaying the right values
received from shiftr.io. This simple setup made it possible to explore
these basic features very quickly without thinking too far ahead.

4. Assembling Multiple Networked Objects from the
Individual Component Prototypes

Once the designer has completed the individual component
prototypes he can begin with assembling the networked objects. In
this step, the individual functionalities of the components have to
be merged into one object. Technically, this means that electron-
ic circuits and software that were isolated before, have to now be
put together to one piece. As the individual components are fully
functional by now this step should be simple. Also, the designer
might need to replicate the components to have multiple networked
objects ready for the next stage.

In the beginning, the individual components for the Eden plant
pot all used their own Arduino Yun. In order to spare resources
and create more compact controllers, the electronics and code got
merged into one codebase and circuit per pot. The setup was also
replicated two times to have three fully working pots (Fig. 8.6).

5. Final Networking of the Networked Objects

In this final step of the iteration's development part, the now as-
sembled networked objects get networked together. This means that
from this point on, data should be shared between the objects auto-
matically and without any help or manual intervention. Of course,
there might still be an application in the background that “animates”
the objects to give the feeling that they are already connected to an
information system. Yet, the goal is to have objects that fully work

102

so that the designer can test them without interruptions in the next
stage.

As the Eden plant pot didn’t have any networking-dependent fea-
tures up until now, another component was added in this step. The

“alarm forwarding” logic component would allow the pot to emit an
alarm as soon as its condition get bad. Other pots would pick up
this alarm and visualize it through their displays. As this component
is totally software related it was added without any further changes
to the objects. Because of the project's small, manageable scale, all
the logic got implemented directly on the Arduinos without having
any centralized information system.

6. Evaluation of the Networked Objects in Their Target
Space

At this stage the designer has a first set of working networked
objects. For a proper evaluation of the experience, it is important
that the objects get applied to their target space. In its best, the expe-
rience should be tested by people that are uninvolved in the project
and can give unbiased feedback. Also, a designer may consider
testing the experience over a longer period of time instead of making
just short test sessions. It is highly recommended to “harvest” the
testers for further ideas as they often raise interesting issues concern-
ing the perception and the usability of the object.

As the Eden pots where intended to inhabit a school building, the
classroom in which they were developed was at the same time also
the application space. Their dependency on a special Wi-Fi connec-
tion prevented a more widespread application at that time. However,
the pots did get separated and placed on other students' desks. The
most obvious user feedback was related to the visible technology in
form of the Arduino and wires that made the pot look fragile. The
controlling of the pot through the touch sensor and the display ring

Fig. 8.4 - The Eden Moisture Sensor

Fig. 8.5 - The Eden Display Ring

Fig. 8.6 - The Finshed Eden Pots

105

was understandable, but did not seem to be important to the user.
The alarming feature however was intriguing to many: A watering
of the plant could be observed within minutes when an alarm was
emitted. The “alarm forwarding” also caused students to kindly
remind other students to water their plants.

7. Reflection on the Iteration, Networked Objects and
Design Space

In the last stage of the iteration the designer reflects on the previ-
ous evaluation and the networked objects as the result of the devel-
opment process. The created experience should be compared to the
desired goal of the project to critically review what is already there
and identify things that are still missing. All the reflection work
should be channeled into changes to the ELAB in form of adding
new components or also removing things that failed or do not make
sense anymore. Also, the review might create questions and ideas
that flow into the design space and need to be further explored and
researched. With finishing this step the designer either is happy with
his result or starts over and begins the next iteration.

The feedback of the evaluation phase showed that the Eden
project is on the right track. Of course, the custom made sensors
needed to be more precise and the system more sensitive as to when
to emit an alarm. In addition to the soil moisture sensors the pot
should also have also sensors further down in the earth to protect it
against overwatering – a problem that has arisen due to the alert sys-
tem. And lastly, the technology of the pots needs to be more hidden
and subtle so as to not put it in the foreground and instead retain
the plants' organic feel.

109

Conclusion
From the beginning of this thesis project, the goal was to create

a framework for designers to allow them to investigate the IoT,
explore possibilities of networked objects and create new experiences
that involve interconnection. With establishing the concept of a net-
worked object that is on the border of the physical and digital space,
designers have a point of reference from which they can start their
own investigations. This concept and especially the design guidelines
described in chapter five are the beginning of creating a foundation
for designers that can be extended and built upon to explore this
field even further. The tool shiftr.io plays a central role in abstract-
ing the technology and making it available in a simple and usable
form. It helps the designer to take ideas from their rough concept to
a working prototype of networked objects in a very short time. In
conjunction with other rapid prototyping tools, designers are now
equipped with a set of tool that allows them to join the discussion
about near future scenario involving the IoT. To allow an even easier
integration of the theoretical concept and the practical tool in a
design process, the design method Networked Exploration helps to
structure a design process that includes both theory and hands-on
work. Furthermore, this method can be used to explore a design
space without having a clear idea of the outcome but the will to find
interesting new experiences.

During the one and a half years of my master's project, the plat-
form shiftr.io did not remain unnoticed: After its launch, shiftr.io
was received enthusiastically by a small community of IoT hobbyists.
Although the impact wasn't huge, these users actively tested and
used the platform, giving me helpful feedback for further implemen-
tations. Shiftr.io was also integrated in a course at the ZHdK with
bachelor students around the topic Embodied Interaction. Based on
their encounter with this technology, three bachelor students have

110

chosen to work with the tool in their diploma project. One of the
students is even using it to develop networked objects, while the
others profit from the ability of shiftr.io to connect things and for
example send data from an Arduino to a website. As the philoso-
phy of shiftr.io is to bring connectivity to any kind of undertaking,
these projects and users show how the platform fulfills its purpose
and lives up to this idea. I will definitely continue working on the
platform, develop it further and show other interested people how
easy connecting things could be. As a first step I decided to launch
the “showcase.shiftr.io” page that will present projects that use that
platform. The first videos will be about the above-mentioned course
and the bachelor projects.

Compared to shiftr.io, the conceptual framework and the de-
sign method have not yet been extensively tested. This is why I
see my master's thesis as the foundation for further investigations,
experiments and projects in the realm of prototyping networked
objects. There are many areas in which this can be done: On the
one hand there is the educational context, where the theory can be
transformed into exercises and design methods that will shape the
thinking of future designers. On the other hand, the arguments
in this thesis could be a starting point for further research projects
that take details from the framework and work out ways of thinking
about and implementing them. Future steps from my side include
a website called “networkedobjects.info” that firstly, establishes the
philosophy behind “Networked Objects” and secondly, serves as a
harbor for people who are interested in collaborating and research-
ing in this field. While my approach to the topic has been influ-
enced strongly by technology, I believe that it is now possible to
continue the research from a more design theoretical or artistic point
of view.

111

In any case, I hope that my efforts will contribute to the shared
idea of an interconnected future. And that one day, this idea will
spark a revolution that will free us from the screens and bring back
the objects.

117

Weiser, M. (1991). The Computer in the 21st Century. Scientific
American.

Dourish, P., & Bell, G. (2011). Divining a Digital Future. MIT
Press.

Evans, D. (2011). The Internet of Things, 1–11.

Clark, A. (2009). Dispersed selves. Leonardo Electronic Almanac,
16(4), 1–7. Retrieved from http://www.leoalmanac.org/wp-content/
uploads/2012/09/02_clark.pdf

Kortuem, G., Kawsar, F., Fitton, D., & Sundramoorthy, V. (2010).
Smart objects as building blocks for the Internet of things. Internet
Computing, IEEE, 14(1), 44–51. doi:10.1109/MIC.2009.143

Ishii, H. (2008). Tangible bits: beyond pix-
els. Tangible and Embedded Interaction 2008, xv–xxv.
doi:10.1145/1347390.1347392

Kranz, M., Holleis, P., & Schmidt, A. (2010). Embedded
Interaction.

Vitsœ | Good design. (n.d.). Vitsœ | Good design. Vitsoe.com.
Retrieved March 6, 2015, from https://www.vitsoe.com/gb/about/
good-design

Dubberly, H., Pangaro, P., & Haque, U. (2009). On Modeling -
What is interaction?: are there different types? Interactions, 16(1),
69–75. doi:10.1145/1456202.1456220

Aether Cone | The Thinking Music Player. (n.d.). Retrieved April 20,
2015, from http://www.aether.com

118

Beaudouin-Lafon, M., & Mackay, W. (2000). Prototyping Tools
and Techniques.

Nielsen, J. (1993). Iterative User Interface Design. IEEE Computer,
26, 32–41. Retrieved from http://www.useit.com/papers/
iterative_design

Banzi, M. (2011). Getting Started with Arduino. O’Reilly Media.

Reas, C., & Fry, B. (2006). Processing: programming for
the media arts. Ai & Society, 20(4), 526–538. doi:10.1007/
s00146-006-0050-9

McCormack, J., Dorin, A., & Innocent, T. (2004). Generative
Design: A Paradigm for Design Research.

Machine to machine. (n.d.). Machine to machine. Retrieved April 3,
2015, from http://en.wikipedia.org/wiki/Machine_to_machine

Minoli, D. (2013). Building the Internet of Things with IPv6 and
MIPv6. Wiley.

Protocol Wars - CHM Revolution. (n.d.). Retrieved April
13, 2015, from http://www.computerhistory.org/revolution/
networking/19/376

Haque Design Research Ltd. (n.d.). Extended Environments
Markup Language: EEML. Retrieved April 6, 2015, from http://
www.eeml.org

MQTT. (n.d.). Retrieved April 6, 2015, from http://mqtt.org/

Rowland, C., Elisabeth, G., Martin, C., Alfred, L., & Ann, L.
(2015). Designing Connected Products. O’Reilly Media.

119

Oza, N., Fagerholm, F., & Münch, J. (2013). How Does
Kanban Impact Communication and Collaboration in Software
Engineering Teams? CoRR Abs/1311.1323, 125–128. doi:10.1109/
CHASE.2013.6614747

121

Fig. 3.1, Retrieved March 2, 2015,
from http://www2.meethue.com/en-au/what-is-hue/get-started

Fig. 3.2, Retrieved October 11, 2014,
from https://nest.com/press/#product-images

Fig. 3.3, Retrieved March 2, 2015,
from https://fresh.amazon.com/dash

Fig. 3.4, Retrieved April 6, 2015,
from http://www.myrocki.com/mediakit

Fig. 3.5, Retrieved March 11, 2015,
from http://en.wikipedia.org/wiki/Amazon_Echo

Fig. 6.1, Retrieved April 23, 2015,
from https://edyn.com

Fig. 6.2, Retrieved April 23, 2015,
from http://www.aether.com

Fig. 6.3, Retrieved April 20, 2015,
from http://www.dropletlife.com

Fig. 6.4, Retrieved April 23, 2015,
from https://sen.se/about/press

Fig. 7.2, Retrieved April 6, 2015,
from http://www.envirolyser.com/2011/01/30/the-internet-of-things

Fig. 7.3, Retrieved April 7, 2015,
from https://entrepreneurshiptalk.wordpress.com/2014/01/29/
the-internet-of-thing-protocol-stack-from-sensors-to-business-value

