
What are Networked Objects?
The computerized world of today is
heavily based on the availability of
mobile devices, like smartphones and
tablets, on which the digital experience
is given by individual applications that
we install on these devices. The screen,
which is the central part of the device,
is the canvas where the human and the
artificial system find common ground
and communicate. While the application
paints the screen with graphical
user interface elements, the human
responds by interacting with these
virtual elements on the screen. All these

interactions happen in the digital space
which requires the human to adapt to a
limited, artificial system.

In the future, that same experience will
be given by the individual networks of
objects that reside in our environment.
As these objects are located in the
physical space, this space becomes
the canvas. Rather than downloading
applications that each solve a certain
problem, we would organize objects
in the space and configure them to
networks that bring us the desired

benefit. The hidden information systems
would then paint the space using these
objects. In that sense, artificial systems
would adapt to us rather than the other
way around.

In contrast to the traditional Internet
where applications interface with the
world through screens and keyboards,
the future user will interact with the
world using interconnected, physical
objects. Wherever we used computers
and smartphones to access the digital
world in the past, there will be objects

that connect the two worlds together
and allow us to interact with them
directly. These «Networked Objects» will
enclose the digital world by providing
natural and physical interfaces. Complex
computer systems will be hidden and
encapsulated in objects that are limited
in functionality, specifically located and
only accessible in the physical world.
Thus, the digital world will be embedded
in the physical world, and the combined
interface will be more powerful than
everything available before.

Today

Tomorrow
This design kit is targeted tow

ards
interaction designers w

ho w
ant

to get started w
ith N

etw
orked

O
bjects, understand their

com
position, learn to structure

a successful design process and
build prototypes quickly.
 The kit includes a set of event-
logic-action cards and tw

o posters
w

ith the follow
ing content:

A
n introduction to the concept of

N
etw

orked O
bjects and to how

interactions w

ill transform
 in the

future.

A
 look at the individual

com
ponents of a N

etw
orked

O
bject, its feedback loop and

design aspects.

A
n introduction to the design

m
ethod «N

etw
orked E

xploration»
that helps to explore a design
space and build netw

orked
prototypes quickly.

A
 brief elaboration on how

prototypes of N

etw
orked O

bjects
can be built using several
prototyping tools.

D
esign K

it
G

et started w
ith exploring,

designing and developing
prototypes of N

etw
orked

O
bjects w

ithin m
inutes.

M
ore inform

ation and an electronic
version can be found on:

http://netw
orkedobjects.info

What is the Anatomy of
a Networked Object?
Networked Objects are located at the
border between the physical and digital
space. They do not only interact with
both spaces, but also link them together.
Therefore, a Networked Object always
includes software development and
the building of a physical object. On
the one hand, the Networked Object is
responsible for translating events that
happen in the physical space to input

for the information system in the digital
space. On the other hand, the Networked
Object also translates output from the
information system to actions that are
executed in the physical space.

Technically, the Networked Object can
be divided into two main components
the «event-action interface (EAI)» and
the «input-output logic (IOL)». The EAI

consists of several sensors, which can
measure and detect events and actuators
that can execute actions. The IOL
represents the Networked Object in the
digital space. Events emitted by the EAI
are managed and further forwarded by
the IOL. The separation is straight forward
as the EAI is the hardware needed to
sense and act upon the environment,
while the IOL is the software that deals

with the communication with other
Networked Objects and information
systems.

The observe-notify feedback loop of a
Networked Object is the basis for the EIA
and IOL which together give a foundation
for the four design aspects: interactivity,
functionality, configurability and topology.

Input-Output Logic
The digital part of a Networked Object
manages the communication with
information systems over the Internet.
Observed events get forwarded to the
information system, processed and
stored. In return, the system sends
actions that need to be executed by
the object.

Observe
Networked Objects observe the
environment and the user and
detect events. These events then get
translated into data which is the input
for the information system.

Notify
Output generated by an information

system gets translated by the
Networked Object to an action. In

most cases the actions are a kind of
notification that informs the users about

changes in the information system.

Event-Action Interface
Every Networked Object has a physical

 form that includes sensors and
actuators that are able to sense and

act upon the environment. Sensor
readings are translated into events and

actions received from the digital side are
transformed into instructions

for the actuators.

Interactivity
The interaction between a single
Networked Object or a system of many
and the user should take the form of a
conversation in which both sides learn
from each other and understand each
other’s behaviours.

Functionality
Functionality can be distributed

among multiple objects, leaving the
individual Networked Object simple and

comprehensible. The objects can also
be seen as building blocks that, when

put together, solve a higher task.

Configurability
Networked Objects offer configurability
by allowing the user to place, attach
and integrate them with the physical
space and by including a few physical
controls for fine adjustments.

Topology
Tailored packages and sets of

Networked Objects give the user
examples of meaningful topologies,

which can then be extended with
additional packages or single products.

How to Design and Prototype
Networked Objects
The design method «Networked
Exploration» supports the designer in
developing his design space through
multiple iterations into Networked
Objects.

To help uncover the necessary
components and work units, the design
space is first organized using the
«Event-Logic-Action Board (ELAB)».
The ELAB is inspired by the project
management technique Kanban which
helps organizing a team and structuring
a development process. Just like Kanban,

the ELAB also uses cards that represent
a unit of work, which in our case would
be an event, logic or action component.

Every designer starts with a defined
design space that includes background
research, mood-boards, videos and notes
to a certain topic. From this material
he defines multiple, different event,
logic and action components that his
Networked Objects could be made of. By
noting down each individual component
onto a card, he creates the ELAB. After
selecting a first set of events, logics and

actions, the designer tests the concepts
in individual experiments. After that,
he will combine the experiments to at
best two or more object prototypes. In
the next step, the designer networks
the prototypes together, thus creating a
working system that can be experienced
by a user.

The system can now be applied to the
target environment and evaluated. The
gained insights and learnings are merged
with the design space and used to refine
the concept and update the ELAB. Then,

a new loop begins in which the designer
repeats the steps mentioned before. The
overall idea is to go through the whole
loop as many times as possible and to
master each stage as fast as possible.
In later iterations more attention can be
given to details in order to reach a higher
quality.

If the result is satisfying the process can
be completed by finalizing the prototypes
into self-contained Networked Objects.

Networked
Prototypes

Applied
Experience

Networked
Objects

Experience
Evaluation

Component
Experiments

Object
Prototypes

Component
Definition

Component
Selection

 Power Link

Sketch
A rough sketch should visualize
figuratively how the aspired method
of observing, processing or executing
is implemented and applied.

Description
Additionally to the sketch, a short

description points out all important
information and needed resources in

the form of an instruction.

Category
While events symbolize sources of
change that are tracked by the object,
actions are the object's capability
to change the environment. Both are
connected by logic components that
process and correlate multiple events
and decide on actions. For simplification
the logic component includes both the
input and output logic.

Cost
Every component needs a certain

amount of time and money to be
built. The cost bar should reflect the

need for those resources to help with
planning bigger projects or managing

time constraints.

The powering of multiple
lights is linked by broad-
casting the events of their
power-switches to each
other on every change.

How to Network Hardware
and Software Together
Building the EAI is the easiest when
using an electronics prototyping platform
like «Arduino». Numerous components
and libraries allow a designer to quickly
sketch an electronic circuit and give him
the possibility to interact with the user

or environment. If the project is simple
enough, the IOL can be programmed
directly on the Arduino. If the project
gains in complexity, the data can be
forwarded to a computer where it gets
processed by a higher order application

written for example in «Processing».
Processing is a very good tool when it
comes to developing a small, central
information system that manages data
coming in from multiple objects. In order
to build bigger systems, platforms like

«node.js», that have a rich ecosystem
of libraries and contributors are
recommended. Finally, the code that is
distributed throughout these machines
needs to be connected using an
intermediary service like «shiftr.io».

Arduino
«Arduino is an open-source electronics
platform based on easy-to-use
hardware and software. It's intended for
anyone making interactive projects.»

https://arduino.cc

Adafruit
«Adafruit was founded in 2005 by MIT
engineer, Limor «Ladyada» Fried. Her
goal was to create the best place online
for learning electronics and making the
best designed products for makers of
all ages and skill levels.»

https://adafruit.com

shiftr.io
«With shiftr.io the process of
interconnecting objects, devices
and apps becomes more accessible
and less complex. Regardless of
wether you are building an interactive
installation, prototyping the next
connected product or simply playing
around with new technologies, shiftr.
io lets you add connectivity to your
project in an early stage.»

https://shiftr.io

node.js
«Node.js is a platform built on Chrome's

JavaScript runtime for easily building
fast, scalable network applications.
Node.js uses an event-driven, non-

blocking I/O model that makes it
lightweight and efficient, perfect for

data-intensive real-time applications
that run across distributed devices.»

https://nodejs.org

MQTT
The shiftr.io platform is built on top

of the MQTT protocol, which is a
publish-subscribe protocol. Clients

(C) always connect to a central broker,
which in the case of shiftr.io is called
a «Namespace» (N). A namespace is
made of topics (T) that are similar to

twitter hashtags. Clients can publish
messages (M) that get received by

other clients if they have made a
matching subscription (S).

Processing
«Processing is a programming language,

development environment, and online
community. Since 2001, Processing has

promoted software literacy within the
visual arts and visual literacy within

technology.»

https://processing.org

T

T

T

N

C

C

S

S

M

// connect the first light to the shiftr.io namespace
light1.connect("mqtt://key:sec@connect.shiftr.io");

// subscribe to published messages matching the pattern
light1.subscribe("lights/*", function(message) {
 // handle message
});

// connect the second light to the shiftr.io namespace
light2.connect("mqtt://key:sec@connect.shiftr.io");

// publish a new message containing a change
light2.publish("lights/2", "on");
// publish another message some time later
light2.publish("lights/2", "off");

Example code that shows how two lights could be interconnected with node.js using shiftr.io.
More detailed explanations and examples can be found online.

https://docs.shiftr.io

TITLE

NOTESSKETCH

